Endangered Earth
Giant Breach in Earth's Magnetic Field Discovered

+ Play Audio | + Download Audio

Dec. 16, 2008

NASA's five THEMIS spacecraft have discovered a breach in Earth's magnetic field ten times larger than anything previously thought to exist. Solar wind can flow in through the opening to "load up" the magnetosphere for powerful geomagnetic storms. But the breach itself is not the biggest surprise. Researchers are even more amazed at the strange and unexpected way it forms, overturning long-held ideas of space physics.

"At first I didn't believe it," says THEMIS project scientist David Sibeck of the Goddard Space Flight Center. "This finding fundamentally alters our understanding of the solar wind-magnetosphere interaction."

One of the THEMIS probes exploring the space around Earth, an artist's concept. [more]

The magnetosphere is a bubble of magnetism that surrounds Earth and protects us from solar wind. Exploring the bubble is a key goal of the THEMIS mission, launched in February 2007. The big discovery came on June 3, 2007, when the five probes serendipitously flew through the breach just as it was opening. Onboard sensors recorded a torrent of solar wind particles streaming into the magnetosphere, signaling an event of unexpected size and importance. 

"The opening was huge—four times wider than Earth itself," says Wenhui Li, a space physicist at the University of New Hampshire who has been analyzing the data. Li's colleague Jimmy Raeder, also of New Hampshire, says "1027 particles per second were flowing into the magnetosphere—that's a 1 followed by 27 zeros. This kind of influx is an order of magnitude greater than what we thought was possible."

The event began with little warning when a gentle gust of solar wind delivered a bundle of magnetic fields from the Sun to Earth. Like an octopus wrapping its tentacles around a big clam, solar magnetic fields draped themselves around the magnetosphere and cracked it open. The cracking was accomplished by means of a process called "magnetic reconnection." High above Earth's poles, solar and terrestrial magnetic fields linked up (reconnected) to form conduits for solar wind. Conduits over the Arctic and Antarctic quickly expanded; within minutes they overlapped over Earth's equator to create the biggest magnetic breach ever recorded by Earth-orbiting spacecraft.

A computer model of solar wind flowing around Earth's magnetic field on June 3, 2007. Background colors represent solar wind density; red is high density, blue is low. Solid black lines trace the outer boundaries of Earth's magnetic field. Note the layer of relatively dense material beneath the tips of the white arrows; that is solar wind entering Earth's magnetic field through the breach. Credit: Jimmy Raeder/UNH. [larger image]

The size of the breach took researchers by surprise. "We've seen things like this before," says Raeder, "but never on such a large scale. The entire day-side of the magnetosphere was open to the solar wind."

The circumstances were even more surprising. Space physicists have long believed that holes in Earth's magnetosphere open only in response to solar magnetic fields that point south. The great breach of June 2007, however, opened in response to a solar magnetic field that pointed north.

"To the lay person, this may sound like a quibble, but to a space physicist, it is almost seismic," says Sibeck. "When I tell my colleagues, most react with skepticism, as if I'm trying to convince them that the sun rises in the west."

Here is why they can't believe their ears: The solar wind presses against Earth's magnetosphere almost directly above the equator where our planet's magnetic field points north. Suppose a bundle of solar magnetism comes along, and it points north, too. The two fields should reinforce one another, strengthening Earth's magnetic defenses and slamming the door shut on the solar wind. In the language of space physics, a north-pointing solar magnetic field is called a "northern IMF" and it is synonymous with shields up!

"So, you can imagine our surprise when a northern IMF came along and shields went down instead," says Sibeck. "This completely overturns our understanding of things."

Northern IMF events don't actually trigger geomagnetic storms, notes Raeder, but they do set the stage for storms by loading the magnetosphere with plasma. A loaded magnetosphere is primed for auroras, power outages, and other disturbances that can result when, say, a CME (coronal mass ejection) hits.

The years ahead could be especially lively. Raeder explains: "We're entering Solar Cycle 24. For reasons not fully understood, CMEs in even-numbered solar cycles (like 24) tend to hit Earth with a leading edge that is magnetized north. Such a CME should open a breach and load the magnetosphere with plasma just before the storm gets underway. It's the perfect sequence for a really big event."

Sibeck agrees. "This could result in stronger geomagnetic storms than we have seen in many years."

A video version of this story may be found here. For more information about the THEMIS mission, visit http://nasa.gov/themis

Author: Dr. Tony Phillips
Credit and Source: Science@NASA

What happened to conventional wisdom? Researchers at the University of New Hampshire are using computer models to unravel the basic physics of the great breach. They're finding that reconnection at the poles is key. Conventional wisdom held that equatorial reconnection was more important, which is why the giant breaches were not anticipated until THEMIS flew through one. 

Related Links:

THEMIS, short for Time History of Events and Macroscale Interactions during Substorms, is the fifth medium-class mission under NASA's Explorer Program. The program, managed by The Explorers Program Office at Goddard Space Flight Center, Greenbelt, Md., provides frequent flight opportunities for world-class space investigations in Heliophysics and Astrophysics. The University of California, Berkeley's Space Sciences Laboratory managed the project development and is currently operating the THEMIS mission. Swales Aerospace, Beltsville, Md., built the THEMIS satellites. 

Magnetic Portals Connect Earth to the Sun
+ Play Audio | + Download Audio

Oct. 30, 2008:

During the time it takes you to read this article, something will happen high overhead that until recently many scientists didn't believe in. A magnetic portal will open, linking Earth to the sun 93 million miles away. Tons of high-energy particles may flow through the opening before it closes again, around the time you reach the end of the page.

An artist's concept of Earth's magnetic field connecting to the sun's--a.k.a. a "flux transfer event"--with a spacecraft on hand to measure particles and fields. [Larger image]
"It's called a flux transfer event or 'FTE,'" says space physicist David Sibeck of the Goddard Space Flight Center. "Ten years ago I was pretty sure they didn't exist, but now the evidence is incontrovertible."

Indeed, today Sibeck is telling an international assembly of space physicists at the 2008 Plasma Workshop in Huntsville, Alabama, that FTEs are not just common, but possibly twice as common as anyone had ever imagined. 

Researchers have long known that the Earth and sun must be connected. Earth's magnetosphere (the magnetic bubble that surrounds our planet) is filled with particles from the sun that arrive via the solar wind and penetrate the planet's magnetic defenses. They enter by following magnetic field lines that can be traced from terra firma all the way back to the sun's atmosphere.

"We used to think the connection was permanent and that solar wind could trickle into the near-Earth environment anytime the wind was active," says Sibeck. "We were wrong. The connections are not steady at all. They are often brief, bursty and very dynamic."

Several speakers at the Workshop have outlined how FTEs form: On the dayside of Earth (the side closest to the sun), Earth's magnetic field presses against the sun's magnetic field. Approximately every eight minutes, the two fields briefly merge or "reconnect," forming a portal through which particles can flow. The portal takes the form of a magnetic cylinder about as wide as Earth. The European Space Agency's fleet of four Cluster spacecraft and NASA's five THEMIS probes have flown through and surrounded these cylinders, measuring their dimensions and sensing the particles that shoot through. "They're real," says Sibeck.

Now that Cluster and THEMIS have directly sampled FTEs, theorists can use those measurements to simulate FTEs in their computers and predict how they might behave. Space physicist Jimmy Raeder of the University of New Hampshire presented one such simulation at the Workshop. He told his colleagues that the cylindrical portals tend to form above Earth's equator and then roll over Earth's winter pole. In December, FTEs roll over the north pole; in July they roll over the south pole. 

A "magnetic portal" or FTE mapped in cross-section by NASA's fleet of THEMIS spacecraft. [Larger image]

Sibeck believes this is happening twice as often as previously thought. "I think there are two varieties of FTEs: active and passive." Active FTEs are magnetic cylinders that allow particles to flow through rather easily; they are important conduits of energy for Earth's magnetosphere. Passive FTEs are magnetic cylinders that offer more resistance; their internal structure does not admit such an easy flow of particles and fields. (For experts: Active FTEs form at equatorial latitudes when the IMF tips south; passive FTEs form at higher latitudes when the IMF tips north.) Sibeck has calculated the properties of passive FTEs and he is encouraging his colleagues to hunt for signs of them in data from THEMIS and Cluster. "Passive FTEs may not be very important, but until we know more about them we can't be sure."

There are many unanswered questions: Why do the portals form every 8 minutes? How do magnetic fields inside the cylinder twist and coil? "We're doing some heavy thinking about this at the Workshop," says Sibeck.

Meanwhile, high above your head, a new portal is opening, connecting your planet to the sun.

Author: Dr. Tony Phillips
Credit and Source: Science@NASA

2008 Huntsville Plasma Workshop -- home page 

Below: In a presentation at the 2008 Plasma Workshop, Robert Fear of the University of Leicester, UK, presented some alternatives for the magnetic topology of FTEs. Possibilities include ropes (left column), cylinders (middle column), or bubbles (right column): abstract.

Real-time Magnetosphere Simulation

SOURCE: Real-time Magnetosphere Simulation

FAIR USE NOTICE: This page contains copyrighted material the use of which has not been specifically authorized by the copyright owner. Pegasus Research Consortium distributes this material without profit to those who have expressed a prior interest in receiving the included information for research and educational purposes. We believe this constitutes a fair use of any such copyrighted material as provided for in 17 U.S.C § 107. If you wish to use copyrighted material from this site for purposes of your own that go beyond fair use, you must obtain permission from the copyright owner.
~ MENU ~


Webpages  © 2001-2015
Blue Knight Productions